1,039 research outputs found

    Microbiological analysis of debris from STS-42 IML-1 by direct plating of rinse waters

    Get PDF
    Microbial analysis of air filter debris from the Spacelab International Microgravity Laboratory-1 (IML-1) mission was performed via direct plating of rinse waters on a battery of selective and nonselective nutrient agars. Microbial isolates were identified using Minitek and Biolog technologies. Twenty-four types of bacteria were recovered and classified; a similar number of fungal types was observed, but these were not identified. This procedure can provide information about the proportions of organism types present at the time of debris collection

    Development of static system procedures to study aquatic biofilms and their responses to disinfection and invading species

    Get PDF
    The microbial ecology facility in the Analytical and Physical Chemistry Branch at Marshall Space Flight Center is tasked with anticipation of potential microbial problems (and opportunities to exploit microorganisms) which may occur in partially closed systems such as space station/vehicles habitats and in water reclamation systems therein, with particular emphasis on the degradation of materials. Within this context, procedures for microbial biofilm research are being developed. Reported here is the development of static system procedures to study aquatic biofilms and their responses to disinfection and invading species. Preliminary investigations have been completed. As procedures are refined, it will be possible to focus more closely on the elucidation of biofilm phenomena

    Growth of Alberta White Spruce After Release from Aspen Competition

    Get PDF

    Decomposition of thin titanium deuteride films: thermal desorption kinetics studies combined with microstructure analysis

    Get PDF
    The thermal evolution of deuterium from thin titanium films, prepared under UHV conditions and deuterated in situ at room temperature, has been studied by means of thermal desorption mass spectrometry (TDMS) and a combination of scanning electron microscopy (SEM), transmission electron microscopy (TEM) and X-ray diffraction (XRD). The observed Ti film thickness dependent morphology was found to play a crucial role in the titanium deuteride (TiDy) film formation and its decomposition at elevated temperatures. TDMS heating induced decomposition of fine-grained thin Ti films, of 10–20 nm thickness, proceeds at low temperature (maximum peak temperature Tm about 500 K) and its kinetics is dominated by a low energy desorption (ED = 0.61 eV) of deuterium from surface and subsurface areas of the Ti film. The origin of this process is discussed as an intermediate decomposition state towards recombinative desorption of molecular deuterium. The TiDy bulk phase decomposition becomes dominant in the kinetics of deuterium evolution from thicker TiDy films. The dominant TDMS peak at approx. Tm = 670 K, attributed to this process, is characterized by ED = 1.49 eV

    Transitions in coral reef accretion rates linked to intrinsic ecological shifts on turbid-zone nearshore reefs

    Get PDF
    Nearshore coral communities within turbid settings are typically perceived to have limited reef-building capacity. However, several recent studies have reported reef growth over millennial time scales within such environments and have hypothesized that depth-variable community assemblages may act as equally important controls on reef growth as they do in clear-water settings. Here, we explicitly test this idea using a newly compiled chronostratigraphic record (31 cores, 142 radiometric dates) from seven proximal (but discrete) nearshore coral reefs located along the central Great Barrier Reef (Australia). Uniquely, these reefs span distinct stages of geomorphological maturity, as reflected in their elevations below sea level. Integrated age-depth and ecological data sets indicate that contemporary coral assemblage shifts, associated with changing light availability and wave exposure as reefs shallowed, coincided with transitions in accretion rates at equivalent core depths. Reef initiation followed a regional ∼1 m drop in sea level (1200–800 calibrated yr B.P.) which would have lowered the photic floor and exposed new substrate for coral recruitment by winnowing away fine seafloor sediments. We propose that a two-way feedback mechanism exists where past growth history influences current reef morphology and ecology, ultimately driving future reef accumulation and morphological change. These findings provide the first empirical evidence that nearshore reef growth trajectories are intrinsically driven by changes in coral community structure as reefs move toward sea level, a finding of direct significance for predicting the impacts of extrinsically driven ecological change (e.g., coral-algal phase shifts) on reef growth potential within the wider coastal zone on the Great Barrier Reef

    Structural and chemical characterisation of titanium deuteride films covered by nanoscale evaporated palladium layers

    Get PDF
    Thin titanium deuteride (TiDy) films, covered by an ultra-thin palladium layer, have been compared with the corresponding titanium and palladium films using a combination of scanning electron microscopy (SEM), transmission electron microscopy (TEM) and X-ray photoelectron spectroscopy (XPS). The TiDy layers were prepared under ultra-high vacuum (UHV) conditions by precisely controlled deuterium sorption at 298 K on a Ti film evaporated onto a Si(100) substrate. Both Ti and TiDy films were then covered in situ by a nanoscale Pd layer. It was found that a 10- to 12-nm-thick Pd layer protects the TiDy films efficiently against extensive air interaction. The morphology of both the surface and bulk Pd/TiDy (Ti) films have been observed using SEM and cross-sectional TEM analysis, respectively. A polycrystalline bulk morphology in both Ti and TiDy films accompanied by a fine-grained Pd surface was observed. High-magnification cross-sectional TEM images reveal the TiDy film to be plastically deformed leading to an increase in the roughness of the top Pd layer. Complex structures, including Moiré patterns, have been identified within the Pd/TiDy interface. The chemical nature of this interface has been analysed after partial sputtering of the Pd top layer using XPS. Besides TiDy and Pd, TiO and PdO were found to be the main chemical species in the interface region of the Pd/TiHy film. The XPS valence-band spectra of the Pd/TiDy interface reveal electronic features characteristic of a Pd–Ti bimetallic structure

    South African research in the hydrological sciences: 1999-2002

    Get PDF
    The principal activities of South African researchers in hydrology and water resources during the reporting period have been concerned with ground- and surface-water interactions, rainfall-runoff modelling, the establishment of improved regional water resource databases, the management of transboundary water resource systems, the ecological reserve, and quantifying the impacts of streamflow reduction activities. Most of these studies have focused on supporting the radically new provisions of the National Water Act of 1998

    Micronutrients: highlights and research challenges from the 1994-5 National Diet and Nutrition Survey of people aged 65 years and over

    Get PDF
    The aims of the National Diet and Nutrition Survey series are summarized, and the new National Diet and Nutrition Survey of people aged 65 years and over is explored, with particular emphasis on micronutrient intakes and status indices. Mean nutrient intakes were generally satisfactory for most micronutrients, but intakes of vitamin D, Mg, K and Cu were low. Intakes of vitamin D were far below the reference nutrient intake for people aged 65 years and over, and there was also biochemical evidence of vitamin D deficiency, for 8% of free-living and 37% of institution participants, attributed partly to limited exposure to sunlight. A substantial proportion of people living in institutions had inadequate biochemical status indices, notably for vitamin C, Fe and folate. Relationships between intake and status were close for vitamins. Mineral intakes did not correlate well with currently used status indices. Some intakes and indices, especially those of vitamin C, carotenoids, Na and K, were strongly correlated with socio-economic status and with north-south gradients in Britain. Future research challenges should address the functional and health significance of low intakes and sub-optimal biochemical indices for certain micronutrients, especially for people living in institutions; the shortcomings of mineral status indices especially as indicators of mineral intake; the social and geographical inequalities of micronutrient intakes and status, and why micronutrient status deteriorates with increasing age. The answers to these questions will help to define the characteristics of nutritional risk for older people in Britain, and to clarify future needs for education and intervention
    • …
    corecore